Biographie

KarenSchloss
Karen Schloss is an Assistant Professor at the University of Wisconsin – Madison in the Department of Psychology and Wisconsin Institute for Discovery – Living Environments Lab. She received her BA from Barnard College, Columbia University in 2005, with a major in Psychology and a minor in Architecture. She then conducted her graduate studies with Stephen Palmer at the University of California, Berkeley, where she received her PhD in Psychology in 2011. She continued working with Stephen Palmer as a postdoctoral scholar from 2011-2013. In 2013, Karen became an Assistant Professor of Research at Brown University in the Department of Cognitive, Linguistic, and Psychological Sciences.
At Brown, she formed her
Visual Perception and Cognition Lab, which investigates how colors influence the way people think, feel, and behave. Her research focuses on what determines people's aesthetic preferences for colors, how those preferences influence decision making, and how colors can be used to communicate meaning in information visualizations. Karen recently moved her lab to the University of Wisconsin – Madison (Summer 2016), where she will extend her research to understand how colors influence judgments and behavior in immersive virtual environments.

Abstract: Color-Emotion Associations: Not so Hue-Based as Previously Thought

Colors are powerful tools for communicating emotion. In film, art, and design, colors signal a wide variety of emotions, including happiness, sadness, and anger. Traditionally, the emotional associations of colors are discussed in terms of hue: e.g., yellow is happy, blue is sad, and red is angry. However, we present evidence that this hue-based account can be misleading and even erroneous, and argue that it has stood in the way of answering deeper questions concerning how color-emotion associations are formed and why they exist. The present study set out to determine whether there is a hue-based component to the happiness vs. sadness of colors, after controlling for chroma and lightness. It was motivated by two key components. First, color-emotion spaces (e.g., as determined through multidimensional scaling) are primarily structured according to the dimensions of saturation and lightness. Second, the most saturated (and most prototypical) yellow is brighter than the most saturated (and most prototypical) blue. In an effort to test saturated colors, studies on color emotion associations have typically confounded hue and lightness by testing lighter yellows and darker blues. Has yellow been shown to be happier than blue, merely because it was lighter? We addressed this question by having participants rate the happiness vs. sadness of 32 colors (8 hues x 2 lightness (L*) levels x 2 chroma (c*) levels).

Lightness dominated their judgments (82% variance explained). Within light colors, happiness was not modulated by yellowness-blueness, but within dark saturated colors, bluer colors were actually happier than yellower colors. A follow-up experiment using colors that were perceptually matched for saturation showed the same pattern. The results imply that in the pursuit of understanding color-happiness associations, we should ask why lighter color are happier, and asking why yellower colors are happier has been the wrong question.



Biographie

almutkelber
Studium der Biologie an den Universitäten von Mainz, Sussex und Tübingen, Promotion in Tübingen über die Orientierung von Bienen. Nach Aufenthalten in Brasilien und Australien seit 1998 an der Universität Lund, da seit 2007 Professor für Sinnesbiologie. Innerhalb dieses Feldes untersucht Almut Kelber seit Jahren das Farbensehen verschiedener Tiere, darunter Schmetterlinge, Bienen, Vögel, Pferde und Seehunde. Besonderer Fokus liegt auf der Suche nach den Begrenzungen und den Anpassungen des Sehsystems an das Verhalten einer Art sowie and verschiendene ökologische Faktoren wie etwas die Lichtverhältnisse.

Abstract: Colour Vision in dim Light

In bright sunlight, we see the world in sparkling colours, but when night falls, colours fade away until, with less than a half moon, everything appears in 50 shades of grey. The reason for this lies in our duplex retina with three types of cones - noisy photoreceptors - and only one type of rods - receptors optimized for low noise. Colour discrimination is based on comparison of cone signals, and limited by receptor noise. Over a large intensity range, the level of receptor noise stays constant, but in dim light, photon shot noise statrts impairing colour discrimination, and the absolute threshold of cone-based vision is set by dark noise in cones. Like humans, other vertebrates with duplex retinae use colour-blind rod vision in dim light.
Nocturnal insects and vertebrates lacking rods have to use the same set of receptors day and night. They have evolved adaptations to increase the sensitivity of their eyes and photoreceptors, and to reduce receptor noise. This allows them to use chromatic vision in dimmer light intensities than humans. Frogs and toads that have two types of rod use opponent signals from rods to control phototaxis even at their visual threshold, at light intensities ten times darker than the absolute threshold of human vision. However, for tasks such as prey or mate choice, their colour discrimination abilities fail at brighter light intensities, only ten times darker than the humans colour vision threshold, limited by the dark noise in their cones.
In this presentation, I review what is known about dim-light colour vision and compare colour vision thresholds with the optical sensitivity of the photoreceptors in selected animal species with lens and compound eyes.



Biographie Prof. Dr. Susanne Marschall

Susanne Marschall
Susanne Marschall hat den Lehrstuhl für Film- und Fernsehwissenschaft am Institut für Medienwissenschaft der Eberhard Karls Universität Tübingen inne. Sie ist Direktorin des dortigen Zentrums für Medienkompetenz sowie Sprecherin des neu gegründeten Tübinger Forschungszentrums für Animation. Sie studierte Deutsche Philologie, Komparatistik und Philosophie in Köln und Mainz und promovierte als Stipendiatin im DFG-Graduiertenkolleg „Drama und Theater als Paradigma der Moderne“ über Tanz und Körperdiskurse im Drama der Jahrhundertwende (TextTanzTheater, 1996). Sie lehrte und forschte nach der Promotion am Seminar für Filmwissenschaft an der Johannes Gutenberg-Universität in Mainz und habilitierte sich dort mit einer Forschungsarbeit zur Bildästhetik des Kinos (Farbe im Kino, 1. Aufl., 2005, 2. Aufl. 2009). 2003 erhielt sie den Lehrpreis für exzellente Leistungen in der Lehre, 2012 wurde sie von der Zeitschrift Unicum zur Professorin des Jahres 2012 gewählt. Zahlreiche Veröffentlichungen zu Farbe, Licht und Bildkomposition im Film, zur Bildsymbolik im interkulturellen Vergleich, zum indischen Kino, zu TV Serien, Tanzgeschichte und Schauspielkunst, Dokumentarfilm, Wahrnehmungstheorie und Emotionsforschung, Mythentheorie und moderner Poetik. Autorin (gemeinsam mit R. Bieberstein und K. Schneider) der Filmdokumentation Lotte Reiniger – Tanz der Schatten (2012, Universität Tübingen, EIKON Südwest, arte). Ihre aktuell zentralen Forschungsschwerpunkte sind Licht, Farbe und Bildgestaltung im Film, die indische Film- und Medienkultur sowie das weite Feld der Animation.

Biographie Prof. Dr. Achim Mittag

mittag_ri_01

Achim Mittag, geb. 1958; 1988/89 Promotion bei H. Schmidt-Glintzer in München; 1986-1994 Wissenschaftlicher Assistent; 1994-2005 Wissenschaftlicher Mitarbeiter, Lehrtätigkeit und Professurvertretung in Bielefeld, Leiden, Marburg, New York, Essen. Seit 2005 Professor für Chinesische Sprache, Literatur und Philosophie an der Universität Tübingen; Forschungsschwerpunkt: Chinesische Historiographie und historisches Denken in China. Wichtige Publikationen: Historical Truth, Historical Criticism, and Ideology. Chinese Historiography and Historical Culture from a New Comparative Perspective (Hrsg., mit H. Schmidt-Glintzer u. J. Rüsen; 2005); Conceiving the "Empire". China and Rome Compared (Hrsg., mit F.-H. Mutschler; 2008).

Abstract: Love, Passion and All-Under-Heaven: Die Ordnung der Farben in Zhang Yimous Hero

Der namenslose Held in Zhang Yimous Hero (2003) trägt Schwarz, während er dem Kaiser die Vorgeschichte eines geplanten Attentats erzählt, das von ihm schließlich doch nicht ausgeführt werden wird. Wie in dem japanischen Film Rashomon von Akira Kurosawa aus dem Jahr 1950 fächert sich diese Vorschichte in widersprüchliche Varianten auf, die allerdings anders als in dem filmhistorisch bedeutenden Vorbild nur von einem Erzähler vorgetragen werden: dem namenslosen Helden und Attentäter höchstselbst. Die einzelnen Geschichten unterscheiden sich nicht nur im Inhalt, sondern vor allem auch in den Farben der Mise en Scène, der Kostüme und des Lichts, das auf die Figuren fällt.

Zhang Yimous Hero handelt von der schillernden Wahrheit, die sich dem Zugriff des Menschen prinzipiell entzieht, und konfrontiert ein globales Publikum zugleich mit den emotionalen Wirkungen fast monochrom leuchtender Farbflächen. Die bunten Farben der einzelnen Sequenzen scheinen sich in dem schwarzen Gewand des namenlosen Helden wie in der subtraktiven Farbmischung zu überlagern, bis sie ausgelöscht sind. Viele Zuordnungen, zum Beispiel die glühend roten Inszenierungen der Eifersuchtsszenen sind international unmittelbar zu verstehen. Zugleich ist die Farbensprache des Films Hero zutiefst in der chinesischen Kultur verankert. Sie verweist auf das traditionelle Farbkonzept der Fünf Wandlungsphasen, das Bestandteil der chinesischen Philosophie des korrelativen Denkens ist. Der Vortrag nähert sich dem Thema der Farbdramaturgie und der kulturspezifischen Symbolsprache der Farben aus filmwissenschaftlicher und sinologischer Perspektive und fächert die konkurrierenden Interpretationsmöglichkeiten von Hero am Beispiel ausgewählter Szenen auf.



Biographie

horres
Robert Horres ist seit 2004 Professor für Japanologie am Asien-Orient-Institut der Universität Tübingen und vertritt dort den Arbeitsbereich Modernes Japan. Er arbeitete an der Forschungsstelle Modernes Japan der Universität Bonn und dem Deutschen Institut für Japanstudien in Tokyo und war Gastwissenschaftler an verschiedenen japanischen Institutionen, wie dem National Institute for Science and Technology Policy und dem historiographischen Institut der Universität Tokyo.

Zu seinen Forschungsschwerpunkten gehören Technik, Gesellschaft und Kultur in Japan. Aktuell arbeitet er an einem Projekt zur Geschichte des Holzhandwerks in Japan. Ein weiteres Projekt ist im Bereich Digital Humanities angesiedelt und befasst sich Problemen der Digitalisierung kulturellen Erbes.

Abstract: Traditionelle Farben Japans

Ausgehend von einer lexikographischen Betrachtung und einer Einführung in die Problematik historischer Farben wird eine Betrachtung des Feldes der traditionellen Farben Japans angestellt.
Dabei werden Symbolik, Verwendungskontexte und soziale Markierung der traditionellen Farbsystematik als Referenzsystem verstanden, welches in diversen modernen Kontexten der japanischen Gesellschaft bis heute wirkmächtig ist.

Einen Schwerpunkt der Ausführungen bilden die mit dem Feld traditionelle und historische Farben verbundenen methodischen und definitorischen Probleme sowie die Frage der Repräsentanz in den Neuen Medien und der heutigen Medienkultur.



Biographie

Yokosawa
Kazuhiko Yokosawa is a Professor of Psychology Department at the University of Tokyo, Japan. He studied information science at Tokyo Institute of Technology, Japan. In 1990, he received a PhD in Engineering from Tokyo Institute of Technology. From 1981-1998 he had worked for NTT Basic Research Laboratory. In 1998 he moved to the University of Tokyo. He studied with Prof. Irving Biederman at University of Southern California from 1995 to 1996 and with Prof. Stephen Palmer at UC Berkeley from 2009 to 2010. He is the former president of Japanese Cognitive Science Society. He is a fellow of the Psychonomic Society and a member of Vision Sciences Society.
His research interests lie in attention, object recognition, and multi-sensory perception. Recently he is concerned with color preference and Japanese grapheme-color synesthesia.

Abstract: Ecological Effects in Cross-Cultural Differences on Single Colour Preferences: The Effect of Symbolic / Conceptual Associations

Palmer and Schloss (2010) reported that preference for a given color is largely determined by affective responses to all of the objects associated with that color. Their ecological valence theory posits that it would be adaptive for people to engage with objects whose colors they like and to avoid objects whose colors they dislike to the extent that their color preferences are correlated with objects that are beneficial/harmful to them. Palmer and Schloss developed an empirical procedure to measure the WAVEs (weighted affective valence estimates) of colors. Each color’s WAVE is the average valence (liking/disliking) rating for all object descriptions given as associations of that color, with each object-valence rating weighted by how well it matches the color for which it was described. U.S. WAVEs strongly predicted average U.S. color preferences (r = .89). For example, people generally like blues and cyans partly because they like blue and cyan objects, such as clear sky and clean water, whereas they generally dislike greenish-browns partly because they dislike greenish-brown objects, such as biological wastes and rotting food.

Color preferences are influenced by color-related experiences within one’s lifetime. Such experiences include a multitude of culturally specific experiences with ecological objects. For example, ecological factors might influence differences between U.S. and Japanese color preferences. Yokosawa, Schloss, Asano, & Palmer (in press) reported that Japanese and U.S. color preferences have both similarities (e.g., peaks around blue, troughs around dark-yellow, and preferences for saturated colors) and differences (e.g., Japanese participants like darker colors less than U.S. participants do). The ecological valence theory implies that within-culture WAVE-preference correlations should be higher than between-culture WAVE-preference correlations. The results supported these predictions. However, object-based WAVEs in Japan predict Japanese color preferences somewhat less strongly (r = .61) than object-based U.S. WAVEs predict U.S. color preferences (r = .89).

Why might object-based WAVEs explain so much less variance in Japan than in the U.S.? Following Palmer, Schloss, Guo, Wung, Chai & Peng (submitted), we hypothesized that symbolic/conceptual associations with colors may also contribute to Japanese color preferences. Symbolic WAVEs were calculated using the same procedure as for object-based WAVEs, except restricting people’s color associations to symbols and abstract concepts. The correlation between color preferences and the symbolic WAVEs in Japan (r = .57) was comparable to that between color preferences and object-based WAVEs (r = .61). Including both symbolic and object WAVEs produced a multiple-R of .72, indicating that both object and symbolic/conceptual associations with colors contribute to single color preferences in Japan. Further analyses show that symbolic WAVEs were as highly correlated with color preferences as object-based WAVEs were in Japan, but not in the U.S. (r = .58 for symbols; r = .89 for objects). Object and symbolic/conceptual associations with colors thus have comparable impact on Japanese single color preferences. This suggests that, unlike in the US where object associations have a dominant role in color preferences, object and symbolic associations contribute equally to color preferences in Japan.



Biographie

yoko
Dr. Yoko Mizokami is an Associate Professor in the Division of Information Science, Graduate School of Advanced Integration Science, Chiba University, Japan.
She received a Ph.D. in Engineering in 2002 from Ritsumeikan University, Japan. From 2002-2006 she was a postdoctoral fellow at the University of Nevada, Reno, Department of Psychology. She moved to Chiba University in 2006.
Her research interests lie in color vision, color science, and vision in natural environments. The current research topics cover the influence of lighting to object appearance, the appearance of skin color and texture, the perception of image color difference, colorfulness adaptation, and vision deficiency.
She received the Konica Minolta Imaging Science Encouragement Award, 2015, the Indow Taro Award, 2010, the Illuminating Engineering Institute of Japan, 2000 and the Optical Society of Japan Award, 1999. She is a member of International Colour Vision Society (ICVS), Vision Sciences Society, OSA, Vision Society of Japan, Color Science Association of Japan, Optical Society of Japan, and the Illuminating Engineering Institute of Japan.

Abstract: Influence of Diffusibility of Illumination on the Appearance of Colour and Surface Properties

The appearance of object surface could be largely influenced by lighting conditions such as color, direction and diffuseness. The diffuseness of illumination would change the components of specular and diffuse reflection resulting difference in the perceived quality of object surface. However, it has not been systematically analyzed how color and surface appearance of an object is influenced by the diffuseness.

We investigated how the impression of surface appearance of test samples changes under diffused light and direct light using real samples in real miniature rooms. We prepared plane gray test samples with three different levels of surface roughness and gray spheres with matt and gloss surface. A sample was placed in the center of a miniature room with either diffuse or directed light, and observer evaluated its appearance. We used a semantic differential method to examine what types of factors were influenced by the diffusibility of illumination. The result of analysis based on 20 adjective-pairs showed that glossiness and smoothness were main factors. Samples tended to appear less glossy and smother under diffused light than under direct light, and their difference was larger for a sample with rough surface.

We also examined the color appearance of several color samples under diffused light and direct light by selecting corresponding color from a Munsell color chart placed in a separate viewing box. The results of corresponding color were similar in both lighting conditions, suggesting color appearance was stable at least for samples that we tested.

Our results suggest that the appearance of surface qualities such as glossiness and smoothness are more influenced by the diffusibility of illumination than color appearance. It also implies that the surface properties of objects should be considered when examining the influence of diffusibility of illumination on surface appearance.



Biographie

Professor of Neuroethology, SOKENDAI. PhD. Graduated from Jiyu-Gakuen college (natural science course) and Sophia University graduate school (behavioral biology). As the 1st year graduate student, I found butterflies detect light by their genitalis, and analysed the mechanism and function of this unique photoreceptive system for my PhD study. After being a biology professor at Yokohama City University, I moved to SOKENDAI in 2006. Visiting fellow at Australian National University (neurobiology); research student at Mitsubishi-Kasei Institute of Life Science; research fellow at NIH (visual science); researcher of JST-PRESTO, etc.

Abstract: How Do Butterflies See Flowers? Their Eyes and Colour Vision

Wie sehen Schmetterlinge Blumen? Ihre Augen und ihr Farbsehen

Flower-visiting butterflies have color vision, including some sophisticated aspects such as color constancy and simultaneous color contrast. Unlike the trichromatic retinas of humans (blue, green and red cones (plus rods)) and honeybees (UV, blue and green cells), we have found that the compound eyes of butterflies contain six, nine or even fifteen photoreceptor classes in species-specific manner. The eyes of the Japanese yellow swallowtail, Papilio xuthus, contain six classes (UV, violet, blue, green, red and broad-band) of receptors. The six classes of receptors are embedded in small units called ommatidia, each housing nine photoreceptor cells, in three fixed combinations; the Papilio eye is a patchwork of spectrally-heterogeneous ommatidia. For example, one type of ommatidia contains the UV, blue, green and red receptors, together forming a single light-guiding rhabdom. Such organization of rhabdom well explains why Papilio butterflies can discriminate colors of dots whose size correspond to their single pixel. At the molecular level, the Papilio retina expresses five visual pigment opsins. There is therefore no one-to-one relationship between the visual pigments and photoreceptor spectral sensitivities. UV and violet receptors actually share an UV-absorbing visual pigment, while the broad-band receptors coexpress a green-absorbing and a red-absorbing visual pigments, which violates the one receptor-one opsin dogma in vision science. The six classes of receptors are embedded in small units called ommatidia, each housing nine photoreceptor cells, in three fixed combinations; the Papilio eye is a patchwork of spectrally-heterogeneous ommatidia. For example, one type of ommatidia contains the UV, blue, green and red receptors, together forming a single light-guiding rhabdom. Such organization of rhabdom well explains why Papilio butterflies can discriminate colors of dots whose size correspond to their single pixel. At the molecular level, the Papilio retina expresses five visual pigment opsins. There is therefore no one-to-one relationship between the visual pigments and photoreceptor spectral sensitivities. UV and violet receptors actually share an UV-absorbing visual pigment, while the broad-band receptors coexpress a green-absorbing and a red-absorbing visual pigments, which violates the one receptor-one opsin dogma in vision science. Do Papilio use all six for seeing colors, i.e., is Papilio hexachromatic? Trichromatic systems have their best wavelength discrimination ability in two wavelength regions. We found foraging Papilio can discriminate about 1 nm difference in three wavelength regions, which appear even better than in humans. Analysis of the behavioral data using the receptor-noise limited color opponency model indicates that the Papilio color vision is tetrachromatic based on UV, blue, green and red inputs.



Biographie

11870662_10207370458329354_6025736553853328019_n
Peter wird 1984 in St. Georgen im Schwarzwald geboren. In der beschaulichen Bergstadt meistert er auch sein Abitur und leistet anschließend Zivildienst in einer psychosomatischen Klinik.
Ende 2004 verschlägt es ihn ins Schwabenland und er beginnt ein einjähriges Praktikum bei der Stuttgarter Postproduktionsfirma Unexpected GmbH. Es folgt eine Festanstellung, bei der er für den technischen Support verantwortlich ist.

Parallel zu seinem Job arbeitet er als 2D-Artist & Compositor an zahlreichen Kurzfilmprojekten mit, bevor er 2005 den österreichischen Independent-Spielfilm “Auf bösem Boden” als VFX-Supervisor betreut.
Von Oktober 2007 bis Mai 2012 studiert Peter an der Filmakademie Baden-Württemberg im Bereich Animation mit Spezialisierung auf Visual Effects, entdeckt aber nebenbei seine Leidenschaft für das Color Grading. Seit 2013 ist Peter freiberuflicher Colorist und hat schon an insgesamt mehreren Hundert Projekten aus dem Bereich Werbung, Imagefilm & Spielfilm mitgearbeitet.

Abstract: Auf dem schmalen bunten Grat zwischen Kunst und Kommerz - Digitale Farbkorrektur für Kinofilme und Werbespots

Painting the thin line between art and commerce - digital color grading for cinema and commercials

Zwischen dem "Vorher" und dem "Nachher" liegen bisweilen ganze farbliche Welten: Im Ausdruck und in der Wirksamkeit der gesamten Geschichte, sogar in der grundsätzlichen Aussage der Bilder, die Peter Hacker, von Beruf sogenannter "Digital Colorist" bearbeitet. Die Möglichkeiten sind schier unendlich und dementsprechend schwer ist es, genau den richtigen Farbton, genau den richtigen Mittelweg zu finden. Farbtheorie ist wissenschaftlich belegt, doch jeder Mensch nimmt Farben anders wahr - Peter Hacker jongliert demnach nicht nur mit Farben, sondern auch mit Vorstellungen von Kunden, Agenturen und Regisseuren - und natürlich seiner eigenen kreativen Vision.
Wie das alles unter einen Hut zu bringen ist, wo die Technik endet und Kreativität anfängt, wie man denn überhaupt fantastische Bilder aus "mäßigem" Ausgangsmaterial zaubert und am Ende alle Beteiligten glücklich macht - davon erzählt Peter Hacker anhand vieler praxisnaher und nachvollziehbarer Beispiele in seinem Vortrag.

There can be worlds bewteen"before" and "after" - worlds of colors. In expression, reception, emotion. In a story's total impact. Even the most basic message of images is steered, enhanced, or turned inside-out, by Peter Hacker, a so-called "Digital Colorist". The possibilities are endless and it takes a composer conducting light and colors to find the right notes of coloring and hit the golden mean. While the theory of colors is scientifically established, every human perceives colors differently. Therefore Peter Hacker not only juggles with colors, but also with the imagination and expectations of customers, agencies, and directors - and, of course, with his own artistic creative vision. How to balance all these factors, how technology and creativity mingle, how to conjure up fantasic images based on "mediocre" raw footage to impress all stakeholders at the end - all of this is part of Peter Hackers lecture by showcasing practical examples.



Biographie

bernd-wissinger
Bernd Wissinger graduated in biology and is currently full professor for Molecular Genetics of Sensory Systems at the University Tübingen and Head of the Molecular Genetics Laboratory at the Institute for Ophthalmic Research. His main research interests focus on the genetic basis of inherited retinal dystrophies, color vision deficiencies and optic neuropathies, the functional analyses of mutant gene products (among others CNGA3, PDE6C), the generation of homologous animal models (mouse and zebrafish) and quantitative genetics of gene expression (eQTLs). Dr. Wissinger has co-authored more than 170 peer-reviewed papers including publications in Science, Cell, Nature Genetics, PNAS, etc. He serves as ad hoc reviewer for >45 scientific journals and numerous funding agencies. He has been scientific coordinator of several research consortia including a State’s priority research project on Color Vision deficiencies, a DFG-funded Clinical Research Group (2005 – 2011) and a National Rare Disease Network (2009-2015), both on Inherited Retinal Dystrophies, and currently coordinates a project on gene augmentation therapy for CNGA3-linked achromatopsia. Dr. Wissinger served as deputy chief for the ‘Genetics’ section within the German Ophthalmological Society (DOG) from 2011-2016 and is an active members of the scientific advisory board for the Achromatopsia e.V. and the BCM Family Foundation patient organizations.

Abstract: Genetics of Inherited Colorblindness in Humans

Inherited Colorblindness in Humans comprises selective dysfunction of defects of the short wavelength-sensitive (SWS), the MWS or the LWS cone or the simultaneous absence of MWS and LWS cone function (termed Blue Cone Monochromacy [BCM]) or all three subtypes of human cone photoreceptors (termed Rod Monochromacy or Achromatopsia [ACHM]). ACHM is a rare, autosomal recessive inherited disorder that features total colorblindness low vision, photophobia and nystagmus. ACHM is genetically heterogeneous and is caused by mutations in genes encoding essential components of the cone phototransduction cascade (cGMP-gated channel, transducin, phosphodiesterase). Surprisingly we recently discovered that also mutations in ATF6, encoding an ER-resident protein stress sensor that participates in the Unfolded Protein Response (UPR), can cause ACHM. On the hand, BCM and selective forms of color blindness are genetically more unique and linked to mutations in the genes encoding for the apo-protein of the respective photopigment (cone opsins). Separate genes for LWS and MWS opsins in Old World Primates are a result of a recent local gene duplication on the X-chromosome. The high sequence identity of LWS and MWS opsin genes induces unequal homologous recombination during meiosis that causes changes in copy numbers and the formation of diverse LWS/MWS or MWS/LWS hybrid genes underlying most common selective color vision defects. Subjects with BCM have lost both LWS and MWS opsin function either due to larger deletions including regulatory sequence elements or the presence of loss-of-function mutations in all expressed LWS/MWS opsin gene copies. In this talk I will briefly review the genetic of inherited colorblindness giving emphasis on novel molecular aspects such as splicing defects induced by exon 3 variants and gene conversion events underlying BCM.



Biographie

kirsten-thompson

Kirsten Moana Thompson is Professor of Film and Director of Film Programme at Seattle University. Previously, she was Professor of Film Studies and Director of the Film Programme at Victoria University, in Wellington, New Zealand, as well as (and previously) Associate Professor and Director of the Film Program at Wayne State University in Detroit. She teaches and writes on animation and colour studies, as well as classical Hollywood cinema, German, New Zealand and Pacific studies. She is the author of Apocalyptic Dread: American Cinema at the Turn of the Millennium (SUNY Press, 2007); Crime Films: Investigating the Scene (Wallflower: 2007), and co-editor with Terri Ginsberg of Perspectives on German Cinema (GK Hall: NY, 1996). She is currently working on a new book on Colour, Visual Culture and Animation.

Abstract: Disney Animation and the Wonderful World of Colour

Disneys Animationskunst und die Wundervolle Welt der Farben

Kleine und große Filmfreunde lieben Walt Disney vor allem als Erfinder von klugen Mäusen und geizigen Enten oder aber durch herzergreifende Märchenfilme wie Schneewittchen oder Tiergeschichten wie Bambi. Vielen ist nicht bekannt, dass Walt Disney zu den treibenden Kräften bei der Entwicklung des us-amerikanischen Technicolor-Verfahrens zählte, das bis heute als bestes Farbfilmverfahren aller Zeiten gehandelt wird. Die Oppulenz und Brillianz der Technicolor-Farben inspirierten den Meister des vergnüglichen Trickfilms aber auch formal-ästhetisch zu Experimenten im Kino, aber auch auf der Bühne seiner Vergnügungsparks.

From the multiplane camera to animatronics, Disney has been always been a technological innovator but less is known about Disney's important developments in colour technology, from the Technicolour Silly Symphonies to his farsighted shift to colour television in the early sixties and the studio’s more recent innovations in theme park colour entertainment from The Fantasmic show to the Paint the Night Parade. This keynote will focus on "The Wonderful World of Colour" a nighttime entertainment spectacle that combines water, fire, laser light and colour with animation from Disney films that are projected on ephemeral water and mist screens created by hundreds of choreographed fountains. The show’s innovations in theatrical exhibition hybridise older entertainment forms with digital-controlled light and colour design and immersive effects, blending tourism, the amusement park and cinematic projection. I will examine the relationship between the transparent, translucent and opaque in the show’s ephemeral misty surfaces and related new media forms to ask: how might we understand colour animation not just as a technological medium but something which enlivens and transforms our world?



Nächste Seite »